On this page we discuss "What is Problem Solving?" under three headings: introduction, four stages of problem solving, and the scientific approach.

### Introduction

Naturally enough, problem solving is about solving problems. And we’ll restrict ourselves to thinking about mathematical problems here even though problem solving in school has a wider goal. When you think about it, the whole aim of education is to equip students to solve problems.

But problem solving also contributes to mathematics itself. Mathematics consists of skills and processes. The skills are things that we are all familiar with. These include the basic arithmetical processes and the algorithms that go with them. They include algebra in all its levels as well as sophisticated areas such as the calculus. This is the side of the subject that is largely represented in the Strands of Number and Algebra, Geometry and Measurement and Statistics.

On the other hand, the processes of mathematics are the ways of using the skills creatively in new situations. Mathematical processes include problem solving, logic and reasoning, and communicating ideas. These are the parts of mathematics that enable us to use the skills in a wide variety of situations.

It is worth starting by distinguishing between the three words "method", "answer" and "solution". By "method" we mean the means used to get an answer. This will generally involve one or more Problem Solving Strategies. On the other hand, we use "answer" to mean a number, quantity or some other entity that the problem is asking for. Finally, a "solution" is the whole process of solving a problem, including the method of obtaining an answer and the answer itself.

method + answer = solution

But how do we do Problem Solving? There are four basic steps. Pólya enunciated these in 1945 but all of them were known and used well before then. Pólya’s four stages of problem solving are listed below.

**Four Stages of Problem Solving **

1. Understand and explore the problem

2. Find a strategy

3. Use the strategy to solve the problem

4. Look back and reflect on the solution.

Although we have listed the four stages in order, for difficult problems it may not be possible to simply move through them consecutively to produce an answer. It is frequently the case that students move backwards and forwards between and across the steps.

You can't solve a problem unless you can first **understand** it. This requires not only knowing what you have to find but also the key pieces of information that need to be put together to obtain the answer.

Students will often not be able to absorb all the important information of a problem in one go. It will almost always be necessary to read a problem several times, both at the start and while working on it. With younger students it is worth repeating the problem and then asking them to put the question in their own words. Older students might use a highlighter to mark the important parts of the problem.

**Finding**** a strategy** tends to suggest that it is a simple matter to think of an appropriate strategy. However, for many problems students may find it necessary to play around with the information before they are able to think of a strategy that might produce a solution. This exploratory phase will also help them to understand the problem better and may make them aware of some piece of information that they had neglected after the first reading.

Having explored the problem and decided on a strategy, the third step, **solve the problem**, can be attempted. Hopefully now the problem will be solved and an answer obtained. During this phase it is important for the students to keep a track of what they are doing. This is useful to show others what they have done and it is also helpful in finding errors should the right answer not be found.

At this point many students, especially mathematically able ones, will stop. But it is worth getting them into the habit of **looking back** over what they have done. There are several good reasons for this. First of all it is good practice for them to check their working and make sure that they have not made any errors. Second, it is vital to make sure that the answer they obtained is in fact the answer to the problem. Third, in looking back and thinking a little more about the problem, students are often able to see another way of solving the problem. This new solution may be a nicer solution than the original and may give more insight into what is really going on. Finally, students may be able to generalise or extend the problem.

**Generalising** a problem means creating a problem that has the original problem as a special case. So a problem about three pigs may be changed into one which has any number of pigs.

In Problem 4 of What is a Problem?, there is a problem on towers. The last part of that problem asks how many towers can be built for *any* particular height. The answer to this problem will contain the answer to the previous three questions. There we were asked for the number of towers of height one, two and three. If we have some sort of formula, or expression, for any height, then we can substitute into that formula to get the answer for height three, for instance. So the "any" height formula is a generalisation of the height three case. It contains the height three case as a special example.

**Extending** a problem is a related idea. Here though, we are looking at a new problem that is somehow related to the first one. For instance, a problem that involves addition might be looked at to see if it makes any sense with multiplication. A rather nice problem is to take any whole number and divide it by two if it’s even and multiply it by three and add one if it’s odd. Keep repeating this manipulation. Is the answer you get eventually 1? We’ll do an example. Let’s start with 34. Then we get

34 → 17 → 52 → 26 → 13 → 40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1

We certainly got to 1 then. Now it turns out that no one in the world knows if you will always get to 1 this way, no matter where you start. That’s something for you to worry about. But where does the extension come in? Well we can extend this problem, by just changing the 3 to 5. So this time instead of dividing by 2 if the number is even and multiplying it by three and adding one if it’s odd, try dividing by 2 if the number is even and multiplying it by 5 and adding one if it’s odd. This new problem doesn’t contain the first one as a special case, so it’s not a generalisation. It **is** an extension though – it’s a problem that is closely related to the original.

It is by this method of generalisation and extension that mathematics makes great strides forward. Up until Pythagoras’ time, many right-angled triangles were known. For instance, it was known that a triangle with sides 3, 4 and 5 was a right-angled triangle. Similarly people knew that triangles with sides 5, 12 and 13, and 7, 24 and 25 were right angled. Pythagoras’ generalisation was to show that EVERY triangle with sides a, b, c was a right-angled triangle if and only if a^{2} + b^{2} = c^{2}.

This brings us to an aspect of problem solving that we haven’t mentioned so far. That is **justification** (or proof). Your students may often be able to guess what the answer to a problem is but their solution is not complete until they can justify their answer.

Now in some problems it is hard to find a justification. Indeed you may believe that it is not something that any of the class can do. So you may be happy that the students can find an answer. However, bear in mind that this justification is what sets mathematics apart from every other discipline. Consequently the justification step is an important one that shouldn’t be missed too often.

**Scientific Approach **

Another way of looking at the Problem Solving process is what might be called the scientific approach. We show this in the diagram below.

Here the problem is given and initially the idea is to experiment with it or explore it in order to get some feeling as to how to proceed. After a while it is hoped that the solver is able to make a conjecture or guess what the answer might be. If the conjecture is true it might be possible to prove or justify it. In that case the looking back process sets in and an effort is made to generalise or extend the problem. In this case you have essentially chosen a new problem and so the whole process starts over again.

Sometimes, however, the conjecture is wrong and so a counter-example is found. This is an example that contradicts the conjecture. In that case another conjecture is sought and you have to look for a proof or another counterexample.

Some problems are too hard so it is necessary to give up. Now you may give up so that you can take a rest, in which case it is a ‘for now’ giving up. Actually this is a good problem solving strategy. Often when you give up for a while your subconscious takes over and comes up with a good idea that you can follow. On the other hand, some problems are so hard that you eventually have to give up ‘for ever’. There have been many difficult problems throughout history that mathematicians have had to give up on.