You need: square grid paper

1. Alison makes a multiplication grid and then a Vedic grid. (Vedic is an ancient mathematical system from India that was used to explore number patterns.)

She changes each two-digit number in her multiplication grid into a Vedic digit by adding the digits in the number. For example, the number 14 becomes Vedic digit 5 because $1+4=5$. The number 28 becomes Vedic digit 1 like this:
$28 \longrightarrow 2+8 \longrightarrow 10 \longrightarrow 1+0 \longrightarrow 1$

1	2	3	4	5	6	7	8	9
2	4	6	8	10	12	14	16	18
3	6	9	12					
4	8					28		
5	10							
6								
7								
8								
9								

Multiplication Grid

\longrightarrow| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 4 | 6 | 8 | 1 | 3 | 5 | 7 | 9 |
| 3 | 6 | 9 | 3 | | | | | |
| 4 | 8 | | | | | 1 | | |
| 5 | 1 | | | | | | | |
| 6 | | | | | | | | |
| 7 | | | | | | | | |
| 8 | | | | | | | | |
| 9 | | | | | | | | |

Vedic Grid

Copy and complete the multiplication grid and then the Vedic grid.
2. a. i. Circle the numbers in your multiplication grid that become the Vedic digits 3, 6, or 9 .
ii. Which rows or columns are your circled numbers in?
iii. Write a rule using Vedic digits to identify multiples of 9 .
iv. Write a rule using Vedic digits to identify multiples of 3 .
b. Alison notices that multiples of 6 are all even numbers but multiples of 3 can be even or odd numbers. Write a rule to identify multiples of 6 .
3. a. Make the Vedic digits for these numbers and work out which are multiples of 9 , which are multiples of 3 , and which are multiples of 6 :
i. 5472
ii. 7458
iii. 897543
iv. 12876
b. Find the missing digit to make each number a multiple of 9:
i. 86】
ii. $96-21$
c. Find the missing digit to make $16 \square 7$ a multiple of 3 . (There are three possible answers.)

