Using Electricity

You need

* the wattage table for Activity Three (see copymaster) * an electric jug * water
* a timer or watch * a cup * a computer spreadsheet or a calculator and graph paper * a classmate

Activity One

Activity Two

With a classmate, investigate Melanie's ideas.
a. Measure 2 cups of cold water into an electric jug. Time how long it takes for the water to boil. Record this time (in seconds) in a spreadsheet or table. Empty the jug and let it cool.

Cups	Time (seconds)
2	

b. Repeat the steps in a for 4,5 , and 8 cups.
c. Graph your data. What does it tell you?
d. Use your graph to estimate how long it would take to boil $1,3,6$, and 7 cups.

If the water in the jug always heats at the same rate, will a full jug take twice as long to boil as half a jug?

e. Check your estimates by boiling 7 cups.

What response could you now give to Melanie's ideas?
a. If a jug draws $2200 \mathrm{~W}(2.2 \mathrm{~kW})$ of power, calculate the amount of energy it will take to boil each number of cups in your experiment. Use the formula:

```
energy (kWh) = power (in kilowatts) x time (in seconds) \div 3 600
```

b. Estimate how much energy is wasted boiling a whole jug to make 1 cup of tea.
c. How long could this wasted energy run a 100 W light bulb?
a. Try this with your classmate:

Measure 4 cups of cold water into a cool electric jug and boil it. Add 4 cups of cold water to the hot water in the jug. Measure how long it takes to bring the jug to the boil again.
b. How does this compare with the time it took to boil
 8 cups of cold water in question $\mathbf{l b}$?

