Thinking Inside the Square

We are developing thinking skills of connecting and analysing. We are exploring some properties of square numbers.
We are developing number strategies using square numbers. We are practising the communication of explanation.

Exercise 1 - A Square Number

Work in pairs, without calculators.
This exercise is to make sure you know all the basic square numbers.

The Idea

A number multiplied by itself makes a square number.
We should understand
$3 \times 3=9$ where 9 is the square number and what it looks like.
The number 9 is the square of the number 3 .
We can also write $9=3^{2}$ and read this as "9 equals 3 squared".
We can also say " 3 squared equals 9" because that is how the " $=$ " sign works.

Multiply these

1) 2×2
(2) 5×5
(3) 1×1
2) 4×4
(5) 9×9
(6) 10×10
3) 7×7
(8) 6×6
(9) 8×8

Square these numbers
10) 7
(11) 8
(12) 9
13) 6
(14) 5
(15) 2
16) 4
(17) 0
(18) 1

Task of the century

On a 100 board put counters on all the square numbers. Do you notice any patterns?
Write the squares of these numbers underneath.

1	2	3	4	5	6	7	8	9

Write here any odd thing you have you noticed. Explain your observation.

Exercise 2 - An Associative Problem

Work in pairs, without calculators.
This exercise will help you know some the squares of the decades to 100 and uses your knowledge of the basic squares.
Place Value Revision
You should know that $20=2 \times 10$. That is what two-tens or twenty means.
Expand these numbers in the same way. Eg $80=8 \times 10$

1) 30
(2) 60
(3) 70
2) 50
(5) 90
(6) 10
3) 40
(8) 20
(9) 80

You may not know how to multiply 20×20 and get 400, but here is one way.

$$
\begin{gathered}
20 \times 20-->2 \times 10 \times 2 \times 10-->2 \times 2 \times 10 \times 10-->4 \times 100-->400 \\
\text { We collect the } 2 \text { 's and the } 10^{\prime} s \text { together. Why? } \\
400 \text { is the square of } 20 \\
20 \text { squared is } 400 \\
20^{2}=400
\end{gathered}
$$

Square these numbers.

$10)$	30	(11) 60	(12)	70
13)	50	(14) 90	(15)	10
$16)$	40	(17)	20	(18)

Use the same expanded numeral idea to square these numbers
19) 300
(20) 600
(21) 700
22) 500
(23) 900
(24) 100
25) 400
(26) 200
(27) 800

And lastly these really big numbers.
28) 3000
(29) 60,000
(30) 700,000
31) $10,000,000$
(32) $50,000,000$
(33) 700,000,000
34) a billion
(35) a quadrillion
(36) a googol

What happens to the number of zeros (place-holders) when the number is squared?

Exercise 3 - A Distribution Problem

Work in pairs, without calculators.
This exercise will help you know and remember some of the squares bigger than 10.

$$
25 \times 25=(20+5) \times(20+5) \quad \text { but what does this equal? }
$$

Why did we choose $(20+5)$ and not something else like $(17+8)$ which also equals $25 ?$

The array model of multiplication shows what happens and how to get the answer.

X	20	5
20	$20 \times 20=400$	100
5	100	25

The answer to 25×25 is equal to $\underline{400}+\underline{2}$ lots of $100+\underline{25}=625$.

Explain where each of the numbers comes from to a friend.

Now use this model to square all of these numbers.

1) $15=(10+5)$
(2) $12=(10+2)$
(3) $17=(10+7)$
2) 11
(5) 14
(6) 19
3) 18
(8) 16
(9) 15
4) 13
(11) 21
(12) 45

What do you notice in these answers?

Write the squares of these numbers underneath.

11	12	13	14	15	16	17	18	19

Invent a game that will help you to memorise these square numbers.

Exercise 4 - A Square is an Odd Combination

Work in pairs.
You need multilink blocks.

The odd numbers are quite closely related to the square numbers. This exercise explores this interesting relationship. It is a very useful to have this understanding.

Firstly make a 1 square then add an L shape of 3 in a different colour. Then add L5 and so on always using a different colour.

What do you notice?

Apart from the lovely colours and having fun with the blocks; it is interesting to notice that the odd numbers add up to make the square numbers.

$$
\begin{gathered}
1+3=2^{2} \\
1+3+5=3^{2} \\
1+3+5+7=4^{2}
\end{gathered}
$$

What do you notice in this pattern?

What do you think the first 5 odd numbers add up to? Explain...and check.
\square

What would the first 10 odd numbers add up to? Explain...and check.

Can you generalise this idea and say what any number of odd numbers would sum to?

Exercise 5 - Odd Patterns.

Work in pairs.
The set of Odd Numbers $=\{1,3,5,7,9,11,13,15,17,19,21,23, \ldots\}$
There is not enough paper in the universe to write this set out completely. In fact there is not enough ink either. Nor is the universe large enough to stuff all the paper you would need. The odd number set is an example of an infinite set.

Fill the gaps and extend this pattern.

Summing the Odds	Sum	A Pattern	
1	1	1^{2}	
$1+3$	4	2^{2}	
$1+3+5$	16	3^{2}	
$1+3+5+7$	36		

Another way to look at the odd numbers. Fill in the gaps and extend the pattern

Curious Odd Numbers	Sum	A Cube Pattern
1	1	$1 \times 1 \times 1=1^{3}$
$3+5$	8	
	27	$3 \times 3 \times 3=3^{3}$
$13+15+17+19$		$4 \times 4 \times 4=4^{3}$

In this pattern what is the middle number in the $3^{\text {rd }}$ row?
What is the middle number in the $11^{\text {th }}$ row?

What do the numbers in the $5^{\text {th }}$ row add up to?

What do the numbers in the $11^{\text {th }}$ row add up to?

Now explore and see if you can discover an odd pattern.

Exercise 6 - Square Stepping Stones

Work in pairs, without calculators.

Here is a problem to solve.

If you know that $12 \times 12=144$, how can you figure out what the answer to 13×13 is?

To solve this we will use the "make it smaller" strategy.

If you know that $3 \times 3=9$, how can you know what 4×4 is?

Here is 3×3. To make 4×4 from the 3×3 I copied a column of 3 and pasted them as "red" smiley faces. Then I copied a row of 4 and pasted them as "aqua" smiley faces.

Looking from left to right;
I added a red face to each row and then a row of 4.

$$
\begin{aligned}
4 \times 4 & =3 \times 3+3 \times 1+1 \times 4 \\
& =3 \text { lots of } 3 \text { and } 3 \text { lots of } 1 \text { and } 1 \text { lot of } 4 \\
& =3 \text { lots of } 4 \text { and } 1 \text { lot of } 4 \\
& =4 \text { lots of } 4 \\
& =4 \times 4
\end{aligned}
$$

Another way of getting to the answer is add two more lots of 3 and then 1 for the missing corner.

Can you see any other ways to make the 4×4 ?

Use one of these methods to find all the squares to 23 starting with the $9 \times 9=81$.

1	9×9	81	6	14×14	11	19×19	
2	10×10		7	15×15	12	20×20	
3	11×11		8	16×16	13	21×21	
4	12×12		9	17×17	14	22×22	
5	13×13		10	18×18	15	23×23	

If $32 \times 32=1024$, what is $33 \times 33 ?$

If $222 \times 222=49284$, what is $223 \times 223 ?$ \qquad

Exercise 7 - A Square is Triangular!

Work in pairs.
You need multilink blocks.

This exercise explores the way triangular numbers combine and make the squares.

Firstly triangular numbers 136

Why do you think they are called triangular numbers?

Above are models for the first 5 triangular numbers.
We will call them T1, T2, T3, T4 and T5. Note that T3 = 1+2+3=6 blocks.

What does T8 = \qquad ?

What does T10 = \qquad ?

Now for an interesting twist.
If we take $T 2$ and turn it over, it fits into $T 3$ and makes a 3×3 square.

Make models using the multilink blocks and explore what happens when two consecutive triangular numbers are combined in this way.

Record here what you found out.

Check using the numbers above that two consecutive triangular numbers make a square number and write the results here.

What two triangular numbers make up the square number 12×12 ? \qquad
What two triangular numbers make up the square number 289 ?
What two triangular numbers make up the square number 10,000 ? \qquad

Exercise 8 - Connecting Squares, Odds and Triangular

Work in pairs.
You will need multilink blocks.

This exercise shows how ideas in mathematics are connected.

The Connection

A square is the sum of some odd numbers. Eg $3^{2}=9=1+3+5$ Two triangular numbers join to make a square number. Eg $T 2+T 3=3+6=9=3^{2}$

So the odd numbers must be connected to the triangular numbers.
How are they connected?

Study the diagrams above. Look for links from one to the next. Go around clockwise and then the other way.

Now do it! Make a set of these with the multilink blocks and transform them from one shape to the next.
At A you can see how $1+3+5$ join together to form the 3×3 square.
At B you can see how the square is made up from the $T 2$ and $T 3$ triangular numbers. Look carefully at C and find the link between T2 and T3 and the odd numbers.

Write here what you see.

The mind shift you need to do is to look at the shape in a different way. Look across the layers and see the 1 in the top layer, the 3 in the next layer and then the 5 in the
 bottom layer. This is an important problem solving technique to remember and use.

Last thought. The odd numbers are closely related to the even numbers! Hmmmm.

Exercise 9 - Squaring Down

Work in pairs, without calculators.

Here is another problem to solve.

If you know that $13 \times 13=169$, how can you figure out what the answer to 12×12 is?

To solve this we will use the "make it smaller" problem solving strategy.
If you know that $4 \times 4=16$, how can you know what 3×3 is?
Here is 4×4. To make 3×3 from the 4×4 I take away the "aqua" row of 4 and then the "red" column of 3 .

I subtracted a row of 4 and then a column of 3 .

$$
\begin{aligned}
4 \times 4 & =3 \times 3+3+4 \\
4 \times 4-4 & =3 \text { lots of } 3 \text { and } 3 \\
4 \times 4-4-3 & =3 \text { lots of } 3 \\
& =3 \times 3
\end{aligned}
$$

Another way of getting to the answer is subtract two lots of 3 and then subtract the lonely 1.

Why do we always subtract an odd and an even number?
\square

Use any method to find these squares.

1) Use $30 \times 30=900$ to solve $29 \times 29=$
2) Use $25 \times 25=625$ to solve $24 \times 24=$
3) Use $70 \times 70=4900$ to solve $69 \times 69=$
4) Use $75 \times 75=5625$ to solve $74 \times 74=$
5) Use $100 \times 100=10000$ to solve $99 \times 99=$
6) Use $250 \times 250=62500$ to solve $249 \times 249=$
7) Use $50 \times 50=2500$ to solve $49 \times 49=$
8) Use $1000 \times 1000=1000000$ to solve $999 \times 999=$
9) Use $37 \times 37=1396$ to solve $36 \times 36=$

Exercise 10 - Squares that Differ by Two

Work in pairs, without calculators.

Here is a bigger problem to solve.

If you know that $12 \times 12=144$, how can you figure out what the answer to 14×14 is?

To solve this we will us the "make it smaller" strategy again.

If you know that $3 \times 3=9$, how can you know what 5×5 is?

Here is 3×3. To make 5×5 from the 3×3 I copied two columns of 3 and pasted them as "red" smiley faces. Then I copied two rows of 5 and pasted them as "aqua. Looking at this across the faces or left to right. I added two "red" smileys to each of the 3 rows and then added two rows of 5 .

$$
\begin{aligned}
5 \times 5 & =3 \times 3+3 \times 2+2 \times 5 \\
& =3 \text { lots of } 3 \text { and } 3 \text { lots of } 2 \text { and } 2 \text { lots of } 5 \\
& =3 \text { lots of } 5 \text { and } 2 \text { lots of } 5 \\
& =5 \text { lots of } 5
\end{aligned}
$$

Another way of getting to the answer is add two more green faces for each row and for each column and then 2×2 for the missing corner.

There are other ways to look at this problem.

Use one of these methods to increase all these squares.

1) Use $9 \times 9=81$ to solve $11 \times 11=$
2) Use $22 \times 22=484$ to solve $24 \times 24=$
3) Use $42 \times 42=1764$ to solve $44 \times 44=$
4) Use $51 \times 51=2809$ to solve $53 \times 53=$
5) Use $89 \times 89=7921$ to solve $91 \times 91=$
6) Use $120 \times 120=14400$ to solve $122 \times 122=$
7) Use $12 \times 12=144$ to solve $14 \times 14=$
8) Use $222 \times 22=49284$ to solve $224 \times 224=$
9) What could you do if the increase was more? Eg $20 \times 20=400$ so what is $27 \times$ 27?

Exercise 11 - A Curious Square Trick

Work in pairs, without calculators.

$$
\begin{aligned}
& 65 \times 65=4225 \\
& \text { We can calculate the answer to similar } \\
& \text { numbers like } 35,45,95 \text { very easily. } \\
& \text { It always ends in } 25 \\
& \text { The hundreds digits are } 6 \times(6+1)=42 \\
& \text { Joining these gives } 4225
\end{aligned}
$$

Work out these using the rule in the box.

1) 25×25
2) 35×35
3) 55×55
4) 75×75
5) 15×15
6) 85×85

It even works on bigger numbers
165×165
Here the hundreds is $16 \times 17=16 \times 16+16=282$

Answer is 28225
But we do need to know how to multiple consecutive numbers like 16×17

Work out these big squares
7) 105×105
8) 115×115
9) 125×125
10) 155×155
11) 185×185
12) 195×195

But wait... why does it work?

So far we are only doing numbers.
We are not doing mathematics until we know why it works;
And can explain it to someone.

Investigate this problem and write your thoughtful answer to explain why it works.

Exercise 12 - Introducing the Square Root

Work in pairs.
You need a calculator.

This exercise is an introduction to the "inverse" of squaring a number.
The Basic Idea
$12 \times 12=144$
Here the 144 is the square of 12
But we can look at this another way.
Here the 12 is the square root of 144.
Why it is called a square root is another puzzle!

A square root is the number which when you multiply it by itself will give you the original number!

An example is 9 which has a square root of 3 , because $3 \times 3=9$.
Arranging the number 9 in a square pattern illustrates where the 3 comes from. It is the length of one side of the square.

How about the number 10 ?

Can you think of a number that when you square it will give you $10 ?$
How about the number 16?
Can you think of a number that when you square it will give you $16 ?$

Sometimes it is very easy to get the square root but usually it is very difficult. That is one good reason why there is a "square root" button on every calculator.

Estimate the square root answers to these problems. Some easy, some hard.

1) 25
2) 24
3) 26
4) 64
5) 60
6) 70

Use your calculator to find the exact answers.

Now for a bewildering insight. See if you can explain this!
Estimate the square root answers to these problems. Some easy, some hard.
7) 250
8) 240
9) 260
10) 640
11) 600
12) 700

Use your calculator to find the exact answers.

Why were these answers not related to the other 6 problems?

Exercise 13 - Revision of "n"

You will need a long paper and a pencil.
Draw an empty number line like this

Now mark the number 0 or zero near the middle.
Now place marks for all of these numbers.
(a) n
(b) the number one less than n
(c) the number 3 less than n
(d) the number 5 less than n
(e) the number 4 more than n
(f) the number 1 bigger than n
(g) the number 2 more than n
(h) the number halfway between 0 and $n+1$
(i) the number 2
(j) the number $2 n$
(k) the number $2 n+2$
(I) the number $2 n+2 n$
(m) the number that is $\frac{1}{4}$ of n smaller than n
(n) $-n$
(o) -1
(p) $1-n$
(q) $-n-1$
(r) $-n+1$
(s) $-n+2$
(t) $-2 n$
(u) n^{2}
(v) n^{3}
(w) square root of n
(x) 1 nth
(y) n nths
(z) the sum of n numbers

Thinking Inside the Square Answers

Exercise 1

1)	4	(2)	25	(3)	1
4)	16	(5)	81	(6)	100
$7)$	49	(8)	36	(9)	64
10)	49	(11)	64	(12)	81
$13)$	36	(14)	25	(15)	4
$16)$	16	(17)	0	(18)	1

Squares of the numbers 1 to 9 are $1,4,9,16,25,36,49,64,81$
Noticed? The difference between the squares are odd. The squares are odd, even, odd, even... The differences are odd because always we add an odd and an even number which is odd and always two more. The odd/even pattern is the result of squaring an odd or even number which arose from add + add $=$ even, even + odd $=$ odd and so on. The oddness toggles. Other patterns possible.

Exercise 2

1)	3×10	(2)	6×10	(3)	7 x 10
4)	5×10	(5)	9×10	(6)	1×10
7)	4×10	(8)	2×10	(9)	8×10
10)	900	(11)	3600	(12)	4900
13)	2500	(14)	8100	(15)	100
16)	1600	(17)	400	(18)	6400
19)	90000	(20)	360000	(21)	490000
22)	250000	(23)	810000	(24)	10000
25)	160000	(26)	40000	(27)	640000
28)	9000000 (6 zeros)	(29)	3600000000 (8 zeros)		
(30)	490000000000 (10 zeros)	31)	$100000000000000 \text { (14 zeros) }$		
(32)	2500000000000000 (14 zeros) (33) 490000000000000000 (16 zeros)				
34)	1000000000000000000 (18 zeros)				
(35)	1000000000000000000000000000000000000 (30 zeros)				
(36) A googol is 1 followed by 100 zeros so a googol squared is : 1000 00 0001 followed by 200 zeros!					

A googol is 1 followed by 100 zeros.
The number of zeros or placeholders doubles when a number is squared.

Exercise 3

Choosing $20+5$ is better than $17+8$ because it is easier to deal with.

1) $100+50+50+25$
(2) $100+20+20+4$
(3) $100+70+70+49$
2) $100+10+10+1$
(5) $100+40+40+16$
(6) $100+80+80+81$
3) $100+80+80+64$
(8) $100+30+30+36$
(9) $100+50+50+25$
4) $100+30+30+9$
(11) $400+20+20+1$
(12) $1600+200+200+25$ or another way.

The answers always have 4 parts.
Squares of numbers 11 to 19 are 121, 144, 169, 196, 225, 256, 289, 324, 361
Games can include pickup memory, snakes mystery cards, square dominos, snap.

Exercise 4

Students should notice the L shape gets bigger by two each time and explain why.
Firt 4 odd numbers must add to 16 .
First 10 numbers will add to 100 .
The sum from 1 of any n odd numbers is $n x n$ or n squared.

Exercise 5

The infinite set may need explaining. The number of grains of sand on all the beaches in the world is not an infinite set but it is uncountable. The number of odd numbers is infinite because there is always a bigger one than the biggest one you can name.
Pattern 1
This shows the sum of odd numbers, the sum, and the sum written as a square.
Last row $=1=3+5+7+9+11+13$ or 7 terms, $49,7^{2}$

Pattern 2

This is as follows

1	1	1^{3}
$3+5$	8	2^{3}
$7+9+11$	27	3^{3}
$13+15+17+19$	64	4^{3}
$21+23+25+27+29+31$	125	5^{3}
$33+35+37+39+41+43+45$	216	6^{3}
$47+49+51+53+55+57+59+61$	343	7^{3}
$63+65+67+69+71+73+75+77+79$	512	8^{3}

middle in $3^{\text {rd }}$ row is 9 or 3 squared
middle in $11^{\text {th }}$ row is 11 squared or 121
$5^{\text {th }}$ row add to $5 \times 5 \times 5=125$
1th row adds to $11 \times 11 \times 11=1331$ (nice link here to Pascals triangle)
Other patterns exist! Look at the digit place and how it changes downwards. Odd/even in cubes!

Exercise 6

Other ways are possible to make 4×4. 2 groups of 2×4 or 4 groups of 2×2 Using method 1

1) 81
(2) $81+9+10=100$
(3) $100+10+11=121$
2) $121+11+12=144$
(5) $144+12+13=169$
(6) $169+13+14=196$
3) $195+14+15=225$
(8) $225+15+16=256$
(9) $256+16+17=289$
Using method 2
4) $289+2 \times 17=1=324$
(11) $324+2 \times 18=1=361$
(12) $361+2 \times 19=1=400$
5) $400+2 \times 20+1=441$
(14) $441+2 \times 21+1=484$
(15) $484+2 \times 22+1=529$
$33 \times 33=1024+32+33=1089$, using method 1
$223 \times 223=49284+2 \times 222+1=49729$, using method 2

Exercise 7

The first 12 triangular numbers are $1,3,6,10,15,21,28,36,45,55,66,78 \ldots$
$\mathrm{T} 8=36$ and $\mathrm{T} 10=55$
Recording will be various but should say it always makes a square.
$\mathrm{T} 11+\mathrm{T} 12=12 \times 12$
$289=17 \times 17$ so T16+T17 will make 289
$10000=100 \times 100$ so T99 + T100 will make 10,000 .
A curious extension is "Are there any triangular numbers that are also square?" to which the answer is of course "no". A triangular number can be rearranged to make a rectangle but never a square and the closest rectangle will always have a side that is just one bigger than the other.

Exercise 8

Study, various.
What do you see is various.
The main purpose here is to build the models and feel how they transform from one to the other. Remaking the T2 with the colours shifted allows the odd numbers to be more clearly seen. The bottom diagram shows this.

Exercise 9

If we subtract an odd then we must subtract an even and if we subtract an even then we must subtract an odd because the shape is always reduced by 1 .

1) $900-30-29=841$
2) $625-25-24=576$
3) $4900-70-69=4761$
4) $5625-75-74=5476$
5) $10000-100-99=9801$
6) $62500-250-249=62001$
7) $49 \mathrm{x} 49=2500-50-49=2401$
8) $999 x 999=1000000-1000-999=998001$
9) $36 \times 36=1369-37-36=1296$

Exercise 10

1) $81+2 \times 9 \times 2+2 \times 2=121$
2) $484+2 \times 22 \times 2+2 \times 2=576$
3) $1764+2 \times 42 \times 2+2 \times 2=1936$
4) $2601+2 \times 51 \times 2+2 \times 2=2809$
5) $7921+2 \times 89 \times 2+2 \times 2=8281$
6) $14400+2 \times 120 \times 2+2 \times 2=14884$
7) $34 \times 34=1024+2 \times 32 \times 2+4=1156$
8) $224 \times 224=49284+$ double double $222+4=50176$
9) If the increase is n then the next square is 2 xnx the original number plus $\mathrm{n} x \mathrm{n}$. Since $20 \times 20=$ 400 , so $27 \times 27=400+2 \times 7 \times 20+7 \times 7=729$

81
3) 484
5) 1764
7) 2601
9) 7921
11) 14400
(2)
4)
(6)
(8)
10)
(12)

Exercise 11

1) $2 \times 300+25=625$
(2) $3 \times 400+25=1225$
(3) $5 \times 600+25=3025$
2) $7 \times 800+25=5625$
(5) $1 \times 200+25=1225$
(6) $8 \times 900+25=7225$
3) $10 \times 1100+25=11025$
(8) $11 \times 1200+25=13225$
(9) $12 \times 1300+25=15625$
4) $15 \times 1600+25=24025$
(11) $18 \times 1900+25=34225$
(12) $19 \times 2000+25=38025$

Why does it work?
Using the array model we see the the calculation is;
$100 \mathrm{xn}^{2}+2 \mathrm{x} 50 \mathrm{xn}+25=100\left(\mathrm{n}^{2}+\mathrm{n}\right)+25==100 \mathrm{x}(\mathrm{n}(\mathrm{n}+1)+25$
where the $n(n+1)$ is the product of two consecutive numbers
and the 100x pushes this into the hundreds column
which leaves the tens and units column clear for the 25 .
A neat trick...can you find another?

Exercise 12

1)	5	(2)	a bit less than 5	(3)	a bit more than 5
4)	8	(5)	a bit less than 8	(6)	a bit more than 8
7)	nothing like 50	(8)	nothing like 50	(9)	nothing like 50
10)	nothing like 80	(11)	nothing like 80	(12)	nothing like 80

Exercise 13

Various answers. As long as the student can explain why the n is where it is placed and the explanation fits then the answer is OK .
Eg n can be to the left of 0 because n can be any where. 2 n must be twice as far to the left if that is the case.
The notion of what the expression means is the important part. In this example "twice as far".

