Using number strategies to solve equations

Strategic Solving - Part II

We are using number strategies to solve linear equations with decimal fractions.

Exercise 1 – Finding *x*.

What to do:

- 1) Rewrite the equation in a way that will help you find the *x* that makes the equation true.
- 2) Clearly explain the strategy you use to solve this equation.
- 3) Give the value of *x* that makes the equation true.

e.g.	Equation:	7.4 = x + 3.8
	Alternative:	x = 7.4 - 3.8
	Strategy:	7.4 - 3 = 4.4; 4.4 - 0.8 = 3.6
	Solution:	<i>x</i> = 3.6

1)	0.8 + x = 9.2	(2)	x + 0.9 = 100.7	(3)	9.2 = x + 2.4
4)	52.3 - x = 48.9	(5)	76.5 = 130.1 - x	(6)	x - 19.9 = 60.5
7)	999.9 = 888.8 + x	(8)	x - 160.7 = 42.3	(9)	7200 - x = 6900.4
10)	0.95 = 0.35 + x	(11)	5.81 = 7.1 - x	(12)	62.62 = x - 47.38
13)	1.47 + x = 15.59	(14)	x - 110.25 = 270.85	(15)	360.11 - x = 300.18
16)	9000.59 + x = 10000.73	(17)	x - 12.34 = 98.76	(18)	5.555 - x = 2.123
19)	0.0005 + x = 0.01	(20)	x - 1.000001 = 4999999.9	(21)	440.04 - x = 404.44
22)	147.147 + x = 741.741	(23)	x - 3.75 = 0.215	(24)	10000000 - x = 0.999995

Exercise 2 – Writing word problems

Select 10 of these equations and write a word problem that the equation could be used to solve.

EA AA AM AP

AC

Answers:

Exercise 1

1)	x = 9.2 - 0.8 $x = 8.4$	(2)	x = 100.7 - 0.9 x = 99.8	(3)	x = 9.2 - 2.4 $x = 6.8$
4)	x = 52.3 - 48.9 x = 3.4	(5)	x = 130.1 - 76.5 $x = 53.6$	(6)	x = 60.5 + 19.9 x = 80.4
7)	x = 999.9 - 888.8 $x = 111.1$	(8)	x = 42.3 + 160.7 x = 203	(9)	x = 7200 - 6900.4 $x = 299.6$
10)	x = 0.95 - 0.35 x = 0.6	(11)	x = 7.1 - 5.81 x = 1.29	(12)	x = 62.62 + 47.38 $x = 110$
13)	x = 15.59 - 1.47 x = 14.12	(14)	x = 270.85 + 110.25 $x = 381.1$	(15)	x = 360.11 - 300.18 $x = 59.93$
16)	x = 10000.73 - 9000.59 $x = 1000.14$	(17)	x = 98.76 + 12.34 $x = 111.1$	(18)	x = 5.555 - 2.123 $x = 3.432$
19)	x = 0.01 - 0.0005 $x = 0.0095$	(20)	x = 4999999.9 + 1.000001 $x = 500000.900001$	(21)	x = 440.04 - 404.44 $x = 35.6$
22)	x = 741.741 - 147.147 $x = 594.594$	(23)	x = 0.215 + 3.75 x = 3.965	(24)	x = 10000000 - 0.999995 $x = 9999999.000005$