

Activity

Welcome to every student's dream job: working at the fruit-roll plant during the school holidays.

1. The strip-making machines show the length of each finished fruit strip as a fraction of a maxi roll. Mini rolls need to be at least $\frac{1}{2}$ as long as maxi rolls. You must put aside any length less than $\frac{1}{2}$ before it reaches the roller. Should you put aside the following lengths?

2. These workers at the fruit-roll factory have different ways to check if a fraction is greater or less than $\frac{1}{2}$. How well does each method work? Explain your answer.

I double the numerator (top number). If this double is more than the denominator (bottom number), the fraction is more than $\frac{1}{2}$.

ROLF

a.

b. I go through my list of fractions equivalent to one-half: $\frac{1}{2}$, $\frac{2}{4}$, $\frac{3}{6}$, $\frac{4}{8}$... I'm not so sure what to do when the denominator is an odd number, like $\frac{7}{12}$.

I halve the denominator. If the half is less than the numerator, the fraction is greater than $\frac{1}{2}$.

a. Can you use these lengths for standard rolls?i. $\frac{10}{12}$ ii. $\frac{74}{100}$ iii. $\frac{24}{32}$ iv. $\frac{33}{45}$

b. What methods could you use to decide if a fraction is smaller or greater than $\frac{3}{4}$?

c.

ate

Moana

4. To make a snack roll, the length of the fruit strip needs to be at least $\frac{2}{3}$ of a maxi roll. These workers are talking about their methods for deciding if a fraction is smaller or greater than $\frac{2}{3}$.

Show how Piripi and Marissa would check to see if $\frac{7}{12}$ and $\frac{10}{14}$ are greater than $\frac{2}{3}$.

- 5. Are these fruit strips greater than, equal to, or less than $\frac{2}{3}$?
 - **a.** $\frac{23}{33}$ **b.** $\frac{30}{45}$
- 6. **a.** Use 12, then 10, then 8, and then 3 as in the following statements. For each number, are the statements true or false?
 - i. $(\bigcirc x 3) \div 4$ has the same answer as $(\bigcirc \div 4) \times 3$.
 - ii. $(\bigcirc x \ 2) \div 3$ has the same answer as $(\bigcirc \div 3) \times 2$.
 - **b.** Try the statements with two different numbers. Is your answer to **a** true for any numbers you might choose to multiply and divide by? Explain your answer.

Challenge

Sometimes the strip-making machine malfunctions and sends through lengths much greater than a maxi roll.

How many $\frac{1}{2}$, $\frac{2}{3}$, and $\frac{3}{4}$ length rolls can be made from each strip below? Describe the methods you used.

a.	$\frac{23}{4}$	b.	$\frac{13}{3}$	c.	$\frac{38}{5}$
d.	$\frac{59}{7}$	e.	<u>99</u> 8	f.	<u>146</u> 9