
b. Compare the total area of A and B with the area of C . What do you notice?
c. Take the triangle you started with in a i and arrange the 3 squares ( $\mathrm{A}, \mathrm{B}$, and C ) around its edges so that the sides match. Draw a diagram showing this arrangement.
d. Write in words what your arrangement seems to prove.

Pythagoras' theorem says:
"In any right-angled triangle, the square on the hypotenuse is equal to the sum of the squares on the other two sides." This is often written as $a^{2}+b^{2}=h^{2}$.

1. The table below gives the two shorter sides of five right-angled triangles.
a. On square grid paper, make accurate drawings of the triangles, like this:

b. Complete the table for each triangle:

- Square the lengths of the two shorter sides and add the results. This gives you $a^{2}+b^{2}$.
- Measure the length of the hypotenuse. This is $h$.
- Calculate $h^{2}$. (Round the result to the nearest whole number.)
- Does $a^{2}+b^{2}=h^{2}$ ? Write "yes" or "no" in the last column.

| Triangle | Side $a$ | Side $b$ | Side $h$ | $a^{2}+b^{2}$ | $h^{2}$ | $a^{2}+b^{2}=h^{2} ?$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| i | 5 | 16 |  | $25+256=281$ |  |  |
| ii | 9 | 7 |  |  |  |  |
| iii | 5 | 6 |  |  |  |  |
| iv | 12 | 4 |  |  |  |  |
| v | 5 | 12 |  |  |  |  |

2. The two shorter sides of a right-angled triangle are 15 centimetres and 26 centimetres. Without doing a scale drawing, find the length of the longest side. those three numbers are known as a Pythagorean triple. One of the triangles in question 1 is a Pythagorean triple. Which one? Can you find others?
