Pythagoras’ Theorem

Pythagoras’ Theorem
“For any right-angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.”

\[a^2 + b^2 = c^2 \]

So, to find the hypotenuse of a right-angled triangle;

\[\begin{array}{c}
5 \\
\text{?} \\
8
\end{array} \]

We know \(a^2 + b^2 = c^2 \), so \(5^2 + 8^2 = c^2 \)

\[25 + 64 = c^2 \]

\[89 = c^2 \]

\[9.4 \text{ (1dp)} = c \]

Find the hypotenuse of these triangles yourself:

1. \[\begin{array}{c}
6 \\
\text{?} \\
11
\end{array} \]

\[____^2 + ____^2 = c^2 \]

\[____ + ____ = c^2 \]

\[____ = c^2 \]

\[____ = c \]

2. \[\begin{array}{c}
10 \\
\text{?} \\
14
\end{array} \]

\[____ + ____ = ____ \]

\[____ + ____ = ____ \]

\[____ = ____ \]

\[____ = ____ \]
3. \[\text{?} \]

4. \[? \]

5. \[? \]

6. \[? \]

\[\text{?}^2 + \text{?}^2 = c^2 \]

\[\text{?}^2 + \text{?}^2 = c^2 \]

\[\text{?} = c \]