

You need: different-coloured counters

- Αςτινιτγ
- 1. Leakhana makes counter designs for L, the first letter of her name.

- Leakhana predicts that an L design with 7 counters on each side has 2 x 6 + 1 counters altogether.
 Make an L design with 7 counters on each side and check this prediction.
- **b.** Explain how the short cut $2 \times 6 + 1$ works.
- c. Complete this table using Leakhana's short cut:

Number of counters on each side	Total number of counters
4	
5	
7	2 x 6 + 1 = 13
23	
87	

2. a. Find a short cut for these L designs. Explain how the rule works.

b. Complete this table using your rule:

Number of counters on each side	Total number of counters
9	
10	
15	
76	
127	

Finding and using rules for patterns in geometric designs

- **3.** A short cut for an L design with 6 counters on each side of the L is 2 x 6 − 1.
 - **a.** Explain how the short cut works.
 - **b.** Use the short cut to predict the total number of counters for an L design with 256 counters on each side of the L.
- 4. Telea makes counter designs for T, the first letter of his name.

- a. Find a short cut for these T designs. Explain how the rule works.
- **b.** Complete this table using your rule:

Number of counters in stem	Total number of counters
4	
7	
11	
32	
71	
478	

- 5. a. Make a different T design and find a rule for it.
 - **b.** Show how the rule works.
 - Use the rule to predict the total number of counters needed for a T design with 250 counters in the stem.
- 6. Find as many rules as you can for predicting the number of counters in Cathy's C designs. You can use different-coloured counters.

Explain how each rule works. Then use each of your rules for C designs to predict the number of counters needed for a C design with 100 counters in the left side of the C.

