

★ access to the Internet or other sources of information on the energy values of food ★ food items ★ scales ★ an oven or a dehydrator \star a classmate

Activity One

Henry and two friends are planning a tramp. They need enough food for 3 days plus extra in case of emergencies.

Henry has worked out his food for 1 day:

He needs 11 000 kilojoules (kJ) per day to meet his energy needs while tramping.

- Will Henry's food give him enough energy? a. (Hint: Use the information in the water content and energy density table. You will need to fill in column D, which is column B x column C.
- Which food will give him the most energy? b.

If Henry ate the same menu every day, how many kilograms of food would he have to carry for a 3-day tramp?

Do foods have more or less energy per gram if they are dehydrated? Discuss with a classmate.

Henry decides to take only dehydrated food.

On your copy of the table below, complete a. columns F and G.

We could take dehydrated food. It's had all the water removed from it!

Water Content and Energy Density							
А	В	С	D	E	F	G	Н
Food	Original mass (g)	Energy density (kJ/g, dehydrated)	Energy (kJ)	Normal water content (% by mass)	Dry mass (g)	Mass saved (g)	Energy density (kJ/g, dehydrated)
Apples	450	1.5		85			

b. By taking only dehydrated food, how many kilograms will Henry save himself carrying?

- **a**. How many grams of beef does it take to make 300 g of dehydrated beef?
 - **b.** If 200 g of mandarin pieces weighs 24 g when dehydrated, what percentage of mandarin is water?
 - **a.** Fill in column H of your table. Which food on Henry's menu has the lowest energy density when dehydrated?
 - **b**. Bananas have more kilojoules per gram than peas, so why are dried peas more energy-dense than banana chips?
 - c. Which three dehydrated foods on Henry's list are the most energy-dense?

Activity Two

5.

- With a classmate, decide on some food items to dehydrate at school. Predict which of these foods will contain the most water.
 - a. Weigh your food items and record their masses.
 - b. Decide how you will determine the water content.
 - i. How will you calculate the percentage of water by mass?
 - ii. How will you know when all the water has gone?
 - a. How accurate were your predictions about water content?
 - b. Which of these foods would you recommend for Henry's tramping trip and why?

Activity Three

Using the Internet or other sources of information on the energy value of foods, develop a menu that would meet your energy requirements for a 3-day tramp. Calculate the mass of your food.

Discuss the suitability of your menu with a classmate.

Calculating with proportions and percentages