Multiplication and Division Strategies

Cross Products

We are learning to multiply multi-digit whole numbers

Exercise 1: It's Place Value but NOT as we know it!

Example: $25 \times 6=\square$, draw the rectangle to show this multiplication
205 5

so $\square=(6 \times 20)+(6 \times 5)$
$=120+30$
$=150$

What to do:

1) Draw the appropriate rectangle like the one in the example and put in all the numbers.
2) Write out the working for the problem, set out like the example above

1)	$13 \times 4=\square$	(2)	$17 \times 6=\square$	(3)	$19 \times 7=\square$	(4)
5)						
$31 \times 9=\square$	(6)	$4 \times 16=\square$	(7)	$5 \times 17=\square$	(8)	$8 \times 36=\square$
9)	$7 \times 44=\square$	(10)	$7 \times 43=\square$			

Exercise 2: Into the unknown

Example: Find the value of the \square and the Δ for this diagram and write down the multiplication question AND answer that goes with the picture

$\square=7$ and so $\Delta=140$ and so the sum and answer must have been
$24 \times 7=140+28$
$=168$

What to do:
Find the value of the \square and the Δ for this diagram and write down the multiplication question AND answer that goes with the picture (set out like the example above)
1)

(6)

\square	50
24	400

(7)

3)

(8)

4)

(9)

5)

(10)

Exercise 3: Mixing up the Unknowns

Example: Find the value of the \square and the Δ for this diagram and write down the multiplication question AND answer that goes with the picture

$\Delta=4$ and so $\square=40$ and so the sum and answer must have been $47 \times 4=188$

What to do:
Find the value of the \square and the Δ for this diagram and write down the multiplication question AND answer that goes with the picture (set out like the example above)
1)

(2)

3)

(4)

5)

(6)

7)

(8)

(9)

(10)
9
11) Make up three problems of your own like the ones in this exercise.

Exercise 4: How does it work with Decimals?

Example: $2.5 \times 3=\square$, draw the diagram to show this multiplication and work out the answer

so
$\square=(3 \times 2)+(3 \times 0.5)$

$$
\begin{aligned}
& =\quad 6+1.5 \\
& =\quad 7.5
\end{aligned}
$$

What to do:

1) Draw the appropriate diagram like the one in the example and put in all the numbers.
2) Write out the working for the problem, set out like the example above
3)

$1.7 \times 3=$
(2) $4.8 \times 4=\square$
(3) $5.6 \times 7=$
(4) $12.7 \times 9=$

Find the value of the \square and the Δ for these diagrams and write down the multiplication question AND answer that goes with the picture.
5)

(11)

6)

(12)

7)

(13)

8)

(14)

9)

(15)

10)

(16) Make up three more problems of your own.

Exercise 5: More Rectangles

Example: $\quad 57 \times 34=\square$, draw the diagram to show this multiplication and work out the answer

$\square \quad=(50 \times 30)+(7 \times 30)+(50 \times 4)+(7 \times 4)$
$=1500+210+200+28$
= 1938

What to do:

1) Draw the appropriate diagram like the one in the example and put in all the numbers.
2) Write out the working for the problem, set out like the example above
3)

$28 \times 62=\square$
(2) $32 \times 41=\square$
(3) $17 \times 56=\square$
(4) $25 \times 37=\square$
5) $14 \times 92=\square$
(6) $87 \times 63=\square$
(7) $74 \times 33=$
(8) $55 \times 55=$
9) $72 \times 86=\square$
(10) $97 \times 79=\square$

Exercise 6: The Second Dimension in the Decimal Zone

Example: $\quad 5.7 \times 34=\square$, draw the diagram to show this multiplication and work out the answer

$$
\begin{aligned}
\square \quad & =(5 \times 30)+(0.7 \times 30)+(5 \times 4)+(0.7 \times 4) \\
& =150+21+20+2.8 \\
& =193.8
\end{aligned}
$$

What to do:

1) Draw the appropriate box diagram like the one in the example and put in all the numbers.
2) Write out the working for the problem, set out like the example above
3) $8.6 \times 16=\square$
(2) $3.4 \times 34=\square$
(3) $1.2 \times 21=$
(4) $7.9 \times 86=$
4) $6.4 \times 63=$
(6) $57 \times 1.8=\square$
(7)
$61 \times 3.9=\square$
(8) $17 \times 6.4=$
5) $92 \times 7.8=$
(10) $66 \times 6.6=\square$

Exercise 7 Finally TWO DECIMALS

Example: $\quad 4.3 \times 8.1=\square$, draw the diagram to show this multiplication and work out the answer

$$
\begin{aligned}
\square & =(4 \times 8)+(4 \times 0.1)+(0.3 \times 8)+(0.3 \times 0.1) \\
& =32+0.4+2.4+0.03 \\
& =34.83
\end{aligned}
$$

What to do:

1) Draw the appropriate diagram like the one in the example and put in all the numbers.
2) Write out the working for the problem, set out like the example above
3) $\quad 3.4 \times 5.7=\square \quad$ (2) $\quad 4.6 \times 8.1=\square \quad$ (3) $\quad 6.1 \times 9.1=\square \quad$ (4) $\quad 5.2 \times 3.4=\square$
4) $\quad 6.8 \times 7.7=\square \quad$ (6) $\quad 9.2 \times 1.9=\square \quad$ (7) $\quad 4.7 \times 3.9=\square \quad$ (8) $\quad 8.8 \times 9.7=\square$
5)

$9.0 \times 8.6=\square$
(10)
$12.3 \times 3.3=\square$

Exercise 8: The Unknown Zone

Example: Find the value of the \square and the Δ for this diagram and write down the multiplication question AND answer that goes with the picture

$\Delta=0.6$ and so $\square=1.6$ and so the sum and answer must have been

$$
\begin{aligned}
8.6 \times 7.2 & =56+1.6+4.2+0.12 \\
& =61.92
\end{aligned}
$$

What to do

1) Find the value of the \square and the Δ for these diagrams and write down the multiplication question AND answer that goes with the picture.
2)

(2)

(3)

4)

(5)

(6)

7)

0.3
(8)

(9)

Exercise 9: Word Problems

What to do:

1) Draw the appropriate diagram like for each question.
2) Write out the working for the problem and find the answer
3) Anton's pool is 24 m long. He keeps count of his total distance by counting laps. After 13 laps, how far has he swum?
4) Pete's climbing rope is 17 m long. He and his partner climb in 'pitches', which is one length of the rope. After 12 'pitches', how far has he climbed?
5) Carpet costs $\$ 87$ per metre. How much would it cost for 13 m ?
6) Josh bets on a horse, which is paying $\$ 2.30$ per dollar. He bets $\$ 6.00$. How much does he win?
7) A box of fruit weighs 3.2 kg . There are 18 boxes on the trailer. What is the total weight of the fruit on the trailer?
(6) Each carton of baked beans has 18 tins in it. Apu orders 23 cartons of baked beans. How many tins has he ordered?
(7) Carpet in a sale is 1.6 m wide. Kate buys 3.5 m of this carpet. What is the area of the room that she is going to lay the carpet in?
(8) Pete reckons that he does 36 sit-ups every time he goes to the gym. If this is so what will be the total number of sit-ups that he has done after 28 visits to the gym?
(9) A small container of V-Pops has 49 in it. Mrs Jones has bought 16 of these containers this year. How many V-Pops has she bought?
(10) One kilogram of a particular fruit $\$ 1.30$ costs. If Kyle buys 7.8 kg of the fruit. How much did it cost?
(11) Write two word questions of your own.

Exercise 10: Investigation

Can this method (rectangles) be used for numbers in the 100's? Write five questions and show the diagram and working that would be used to find the answers.

Exercise 11: Moving to Algebra

Using the rectangle 6×4, try adding a length to both sides.

Adding three to both sides

$(3+6) \times(4+3)=12+24+9+18$ $=63$

Now add x to both sides

We can write this as:
$(x+6)$ multiplied by $(x+4)$
or $(x+6)(x+4)$
$=x^{2}+6 x+4 x+24$
$=x^{2}+10 x+24$

For each of the following draw a diagram, label it and do the calculation setting it out like the example above.

1) $\quad(x+4)(x+2)$
2) $\quad(x+5)(x+4)$
3) $(x+2)(x+9)$
4) $(x+6)(x+4)$
5) $\quad(x+8)(x+2)$
6) $\quad(x+7)(x+6)$
7) $\quad(x+5)(x+3)$
8) $\quad(x+6)(x+1)$
9) $(x+4)(x+4)$
10) $\quad(x+8)(x+7)$

Can you do these without the diagram?

Cross products

Answers

Exercise 1

1) $13 \times 4=(10 \times 4)+(3 \times 4)$

$$
\begin{aligned}
& =40+12 \\
& =52
\end{aligned}
$$

2) $17 \times 6=(10 \times 6)+(6 \times 7)$

$$
\begin{aligned}
& =60+42 \\
& =102
\end{aligned}
$$

3) $19 \times 7=(10 \times 7)+(9 \times 7)$

$$
\begin{aligned}
& =70+63 \\
& =133
\end{aligned}
$$

4) $22 \times 3=(3 \times 20)+(2 \times 3)$

$$
\begin{aligned}
& =60+6 \\
& =66
\end{aligned}
$$

5) $31 \times 9=(9 \times 30)+(1 \times 9)$

$$
\begin{aligned}
& =270+9 \\
& =279
\end{aligned}
$$

6) $4 \times 16=(4 \times 10)+(4 \times 6)$

$$
\begin{aligned}
& =40+24 \\
& =64
\end{aligned}
$$

7) $5 \times 17=(5 \times 10)+(5 \times 7)$

$$
\begin{aligned}
& =50+35 \\
& =85
\end{aligned}
$$

8) $8 \times 36=(8 \times 30)+(8 \times 6)$

$$
\begin{aligned}
& =240+48 \\
& =288
\end{aligned}
$$

6

10
9

7

70	63

20	2
60	6

10
6

4

10	6
40	24

$10 \quad 7$
5

10	7
50	35

240	48

9) $7 \times 44=(7 \times 40)+(7 \times 4)$

$$
\begin{aligned}
& =280+28 \\
& =308
\end{aligned}
$$

10) $7 \times 43=(7 \times 40)+(7 \times 3)$

$$
\begin{aligned}
& =280+21 \\
& =301
\end{aligned}
$$

Exercise 2: Into the unknown

1) $\Delta=60$
$\square=3$
$\square=5$
$\square=27$
$\square=12$
$\square=56$
$\square=3$
$\square=60$
$\square=40$
$\square=560$
$\square=3$

Exercise 3: Mixing up the unknowns

1) $\Delta=4$
2) $\Delta=6$
3) $\Delta=3$
4) $\triangle=5$
5) $\Delta=6$
6) $\triangle=80$
7) $\triangle=7$
8) $\Delta=20$
9) $\Delta=4$
10) $\Delta=9$
$37 \times 4=148$
11) $\Delta=150$
$\square=5$
12) $\triangle=10 \quad \square=27$
13) $\Delta=20 \quad \square=12$
14) $\triangle=40 \quad \square=56$
15) $\Delta=8$ $=3$
16) $\Delta=6$ - 60
17) $\Delta=9$ $=560$
18) $\Delta=90$ $\square=3$
$\square=50$
$52 \times 6=312$
$\square=8$
$48 \times 3=144$
$95 \times 6=570$
$76 \times 8=608$
$89 \times 3=267$
$67 \times 9=603$
$29 \times 9=261$
$84 \times 2=168$
$99 \times 9=891$

Question 4: How does it work with decimals

1) $1.7 \times 3=(1 \times 7)+(0.7 \times 7)$

$$
\begin{aligned}
& =3+4.9 \\
& =5.1
\end{aligned}
$$

\square
2) $4.8 \times 4=(4 \times 4)+(4 \times 0.8)$

$$
=16+3.2
$$

$$
=19.2
$$

3) $5.6 \times 7=(5 \times 7)+(0.6 \times 7)$ $=35+4.2$
$=39.2$
4

4	0.8
16	3.2

5
0.6

4) $12.7 \times 9=(9 \times 12)+(9 \times 0.7)$
$=108+6.3$
$=114.3$

5) $\Delta=0.9$

$7.9 \times 4=31.6$
6) $\Delta=0.6$
$\square=8$
$8.6 \times 3=25.8$
7) $\Delta=9$
$\square=0.8$
$9.8 \times 4=39.2$
8) $\Delta=60$
$\square=1.5$
$12.3 \times 5=61.5$
9) $\Delta=20$
$\square=0.7$
$20.1 \times 7=140.7$
10) $\triangle=8$
$\square=30$
$30.4 \times 8=243.2$
11) $\Delta=9$
$\square=360$
$40.3 \times 9=362.7$
12) $\Delta=4$
$\square=0.8$
$50.2 \times 4=200.8$
13) $\Delta=3$
$\square=1.8$
$1.6 \times 3=4.2$
14) $\Delta=9$
$\square=0.8$
$\square=57$
$14.8 \times 9=133.2$
$19.9 \times 3=59.7$

Exercise 5: More rectangles

1)

$$
\begin{aligned}
28 \times 62 & =(20 \times 60)+(8 \times 60)+(20 \times 2)+(8 \times 2) \\
& =1200+480+40+16 \\
& =1736
\end{aligned}
$$

2)

30
2
401200 80 1 30

3)

$$
\begin{aligned}
17 \times 56 & =(10 \times 50)+(7 \times 50)+(10 \times 6)+(7 \times 6) \\
& =500+350+60+42 \\
& =952
\end{aligned}
$$

10		
7		
500 350 60 42		

4)

$$
\begin{aligned}
25 \times 37 & =(20 \times 30)+(20 \times 7)+(5 \times 30)+(5 \times 7) \\
& =600+140+150+35 \\
& =925
\end{aligned}
$$

$$
20
$$

$$
5
$$

5)

$$
\begin{aligned}
14 \times 92 & =(10 \times 90)+(10 \times 2)+(4 \times 90)+(4 \times 2) \\
& =900+20+360+8 \\
& =1288
\end{aligned}
$$

| 90900 360
 20 8
 80 7 |
| :--- | :--- | :--- |

6)

$$
\begin{aligned}
87 \times 63 & =(80 \times 60)+(80 \times 3)+(7 \times 60)+(7 \times 3) \\
& =4800+240+420+21 \\
& =5481
\end{aligned}
$$

7)

$$
\begin{aligned}
74 \times 33 & =(70 \times 30)+(70 \times 3)+(30 \times 4)+(3 \times 4) \\
& =2100+210+120+12 \\
& =2442
\end{aligned}
$$

70
4
30
2100

8)

$$
\begin{aligned}
55 \times 55 & =(50 \times 50)+(50 \times 5)+(50 \times 5)+(5 \times 5) \\
& =2500+250+250+25 \\
& =3025
\end{aligned}
$$

9)

$$
\begin{aligned}
72 \times 86 & =(70 \times 80)+(80 \times 2)+(70 \times 6)+(2 \times 6) \\
& =5600+160+420+12 \\
& =6192
\end{aligned}
$$

80

6

5600	160
420	12

10)

$$
\begin{aligned}
97 \times 79 & =(90 \times 70)+(70 \times 7)+(90 \times 9)+(9 \times 7) \\
& =6300+490+810+63 \\
& =7663
\end{aligned}
$$

90
7
70
90
9

Exercise 6: Working with decimals

1)

$$
\begin{aligned}
8.6 \times 16 & =(8 \times 10)+(8 \times 6)+(10 \times 0.6)+(6 \times 0.6) \\
& =80+48+6+3.6 \\
& =137.6
\end{aligned}
$$

2)

$3.4 \times 34=(3 \times 30)+(3 \times 4)+(30 \times 0.4)+(4 \times 0.4)$
$=90+12+12+1.6$
$=115.6$

8	0.6
10	80
48	3.6
6	

30 | 90 | 12 |
| :---: | :---: |
| 12 | 1.6 |

3)

1
$1.2 \times 21=(1 \times 20)+(1 \times 1)+(20 \times 0.2)+(0.2 \times 1)$
$=20+1+4+0.2$
$=25.2$
4)

$$
\begin{aligned}
7.9 \times 86 & =(7 \times 80)+(7 \times 6)+(80 \times 0.9)+(0.9 \times 6) \\
& =560+42+72+5.4 \\
& =679.4
\end{aligned}
$$

5)

$6.4 \times 63=(6 \times 60)+(6 \times 3)+(0.4 \times 60)+(0.4 \times 3)$
$=360+18+24+1.2$
$=403.2$
6)

$$
\begin{aligned}
57 \times 1.8 & =(1 \times 50)+(0.8 \times 50)+(7 \times 0.8)+(1 \times 7) \\
& =50+40+5.6+7 \\
& =102.6
\end{aligned}
$$

7)

$$
\begin{aligned}
61 \times 3.9 & =(60 \times 3)+(60 \times 0.9)+(3 \times 1)+(0.9 \times 1) \quad 60 \\
& =180+54+3+0.9 \\
& =237.9
\end{aligned}
$$

180	54
3	0.9

8)

\[

\]

9)

$$
\begin{aligned}
92 \times 7.8 & =(7 \times 90)+(7 \times 2)+(0.8 \times 90)+(0.8 \times 2) \\
& =630+14+7.2+1.6 \\
& =717.6
\end{aligned}
$$

10)

$$
\begin{aligned}
66 \times 6.6 & =(6 \times 60)+(6 \times 6)+(0.6 \times 60)+(0.6 \times 6) \\
& =360+36+36+3.6 \\
& =435.6
\end{aligned}
$$

60 | 660 | 36 |
| :---: | :---: |
| 36 | 3.6 |

Exercise 7: Two Decimals

1)

$$
\begin{aligned}
3.4 \times 5.7 & =(3 \times 0.7)+(3 \times 5)+(0.4 \times 5)+(0.4 \times 0.7) \\
& =2.1+2.0+15+0.28 \\
& =19.38
\end{aligned}
$$

5
0.7

15	2.0
2.1	0.28

2)

$4.6 \times 8.1=(4 \times 8)+(4 \times 0.1)+(0.6 \times 8)+(0.6 \times 0 .:$
$=32+0.4+4.8+0.06$
$=37.26$
8
0.1

32	4.8
0.4	0.06

3)

$6 \quad 0.1$
$6.1 \times 9.1=(6 \times 9)+(6 \times 0.1)+(0.1 \times 9)+(0.1 \times 0.1)$
$=54+0.6+0.9+0.01 \quad 9$
$=55.51$
0.1

54	0.9
0.6	0.01

4)

$$
\begin{aligned}
5.2 \times 3.4 & =(5 \times 3)+(5 \times 0.4)+(0.2 \times 3)+(0.2 \times 0.4) \\
& =15+0.6+0.08+2.0
\end{aligned}
$$

0.4

15	0.6
2.0	0.08

5)

$$
\begin{aligned}
6.8 \times 7.7 & =(6 \times 7)+(6 \times 0.7)+(0.8 \times 7)+(0.8 \times 0.7) \\
& =42+4.2+5.6+0.56 \\
& =52.36
\end{aligned}
$$

0.7

42	5.6
4.2	0.56

6)

$$
\begin{aligned}
9.2 \times 1.9 & =(9 \times 1)+(9 \times 0.9)+(0.2 \times 1)+(0.2 \times 0.9) \\
& =9+8.1+0.2+1.8 \\
& =17.48
\end{aligned}
$$

$$
1
$$

0.9

$\begin{array}{ll}4 & 0.7\end{array}$
7)

$$
\begin{aligned}
4.7 \times 3.9 & =(4 \times 3)+(4 \times 0.9)+(0.7 \times 3)+(0.7 \times 0.9)^{3} \\
& =12+3.6+2.1+0.63 \\
& =18.33
\end{aligned}
$$

12	2.1
3.6	0.63

8)

8.8×9.7	$=(8 \times 9)+(0.8 \times 9)+(8 \times 0.7)+(0.8 \times 0.7)$	8	
	$=72+7.2+5.6+0.56$	9.8	
	$=85.36$	9	72

9)

$$
\begin{align*}
9.0 \times 8.6 & =(9 \times 8)+(9 \times 0.6) \\
& =72+5.4 \tag{8}\\
& =77.4
\end{align*}
$$

0.6

72	0.0
5.4	0.0

10)

$$
\begin{aligned}
12.3 \times 3.3 & =(12 \times 3)+(12 \times 0.3)+(0.3 \times 3)+(0.3 \times 0.3) \\
& =36+3.6+0.9+0.09 \\
& =40.59
\end{aligned}
$$

Exercise 8: The unknown Zone

1) $\Delta=0.2$
$\square=2.4$
$8.2 \times 7.3=59.86$
2) $\triangle=0.2 \quad \square=48$
$8.2 \times 6.4=52.48$
3) $\Delta=0.1$
$\square=24$
$6.3 \times 4.1=25.83$
4) $\Delta=2$
$\square=0.3$
$1.8 \times 2.3=4.41$
5) $\Delta=0.5$
$\square=42$
$6.7 \times 7.5=50.25$
6) $\Delta=0.4$
$\square=27$
$9.4 \times 3.6=33.84$
7) $\Delta=6$
$\square=0.15$
$6.5 \times 6.3=40.95$
8) $\triangle=9$
$\square=0.28$
$9.7 \times 8.4=81.48$
9) $\triangle=0.54 \quad \square=21$
$7.6 \times 3.9=29.64$

Exercise 9: Word problems

1) $24 \times 13=(20 \times 10)+(20 \times 3)+(4 \times 10)+(4 \times 3)$

$$
\begin{aligned}
& =200+60+40+12 \\
& =312 m
\end{aligned}
$$

$$
10
$$

$$
3
$$

200	40
60	12

2) $17 \times 12=(10 \times 10)+(10 \times 2)+(10 \times 7)+(7 \times 2)$

$$
\begin{aligned}
& =100+20+70+14 \\
& =204 m
\end{aligned}
$$

3) $87 \times 13=(80 \times 10)+(80 \times 3)+(7 \times 10)+(7 \times 3)$

$$
=800+240+70+21
$$

$=\$ 1131$

4) $2.30 \times 6.00=(2 \times 6)+(0.3 \times 6)$
$=12+1.8$
$=\$ 13.8$

6

12	1.8

5) $3.2 \times 18=(3 \times 10)+(10 \times 0.2)+(8 \times 3)+(8 \times 0.2)$

$$
\begin{aligned}
& =30+2.0+24+1.6 \\
& =57.6 \mathrm{~kg}
\end{aligned}
$$

$$
10
$$

30	2.0
24	1.6

6) $18 \times 23=(10 \times 20)+(10 \times 3)+(8 \times 20)+(8 \times 3)$

$$
=200+30+160+24
$$

10

$$
=414 \text { tins }
$$

20	200
30	24

7) $1.6 \times 3.5=(1 \times 3)+(1 \times 0.5)+(0.6 \times 0.5)+(0.6 \times 3)$
$=3+0.5+0.3+1.8$
$=5.6 \mathrm{sq} \mathrm{m}$

8) $36 \times 28=(30 \times 20)+(8 \times 30)+(6 \times 20)+(6 \times 8)$
$=600+240+120+48$
$=1008$ sit ups

9) $49 \times 16=(40 \times 10)+(40 \times 6)+(9 \times 10)+(9 \times 6)$
$=400+240+90+54$
$=784$

6

20	 600 240

10) $1.3 \times 7.8=(1 \times 7)+(1 \times 0.8)+(0.3 \times 7)+() .3 \times 0.8)$
$=7+0.8+2.1+0.24$
$=10.14$

7
0.8

7	2.1
0.8	0.24

Exercise 10: Investigation

Be prepared to present the answers to your investigation to the rest of the group, explaining what you tried and what you learned

Exercise 11: Moving to Algebra

1) $x^{2}+6 x+8$
2) $x^{2}+9 x+20$
3) $x^{2}+11 x+18$
4) $x^{2}+10 x+24$
5) $x^{2}+10 x+24$
6) $x^{2}+13 x+42$
7) $x^{2}+8 x+15$
8) $x^{2}+7 x+6$
9) $x^{2}+8 x+16$
10) $x^{2}+15 x+56$
