Missing Digits

```
You need }\\mathrm{ a classmate
```


Activity

Marcus and Huia are trying to solve this missing digit problem. Both \qquad s are the same digit.

What digit is the \square in this problem?

Here are some other missing digit problems. Within each problem, the \square is the same digit. Solve them using what you know about numbers rather than using trial and improvement. Write down the steps you used to solve each problem.
a. $1000-\square 2 \square=273$
b. $4 \bigcirc 6+123=\bigcirc 79$
c. $67 \backslash+67 \square=1356$
d. $101-3 \triangle-\triangle 3=2$
e. $\Xi 6 \times \square=18 \square$
f. $\bigcirc 5 \bigcirc \times 11=\bigcirc 88 \bigcirc$
g. $684 \div \nabla=34 \nabla$

Marcus and Hula are discussing the patterns they noticed when they were solving missing digit problems.

In multiplication problems (except for multiplying by 5), I know that if 1 factor is odd, there will only be 1 digit that will work in the ones place. For example, with $3 \square \times 7=\square \square 4$, the \square must be 2 because only 2×7 gives a 4 in the ones place.

What patterns did you notice when you were solving your missing digit problems?
Make up some missing digit problems for a classmate to solve.
Make sure you check them carefully before you give them to your classmate.

