A Long Look at Decimals

You need 🖊 a metre ruler

metre-long strips of paper

Activity

Kylie folds a 1-metre-long strip of paper in half and creases it.

I mean "out of 100

She opens it up and places it along a metre ruler.

- How does Kylie know that $\frac{1}{2}$ is $\frac{50}{100}$? 1.
- 2. Fold other 1-metre-long strips into different fractions:

fifths $\left(\frac{1}{5}\right)$

eighths $\left(\frac{1}{8}\right)$

- Find out the decimal and percentage equivalents of these fractions by putting each folded strip along a metre ruler:
- ii. $\frac{3}{4}$
- iii. $\frac{1}{5}$

- vi. $\frac{7}{8}$
- **vii.** $\frac{2}{10}$
- **viii**. $\frac{5}{10}$
- Kylie also uses her fraction strips to make a number line like this:

She also includes the fractions $\frac{1}{3}$, $\frac{1}{4}$, $\frac{1}{5}$, and $\frac{1}{8}$.

Draw a number line like Kylie's, including the extra fractions.

Which of these fractions is largest: $\frac{1}{2}$, $\frac{2}{3}$, $\frac{3}{4}$, $\frac{4}{5}$, or $\frac{5}{6}$? 4.