V5 Learning at home activity sheet \#3

Problem 1:

How long is one thousand minutes?

Problem 2:

Brian has a pegboard with 9 pegs in a 3 by 3 square array. He also has a piece of string that he wants to put from the top left hand peg A, to the bottom right hand peg B, so that it touches all of the other pegs on the way only once.

If the string is never put diagonally between the pegs, how many different ways can Brian string up his pegboard?

Problem 3:
You can use four copies of this tile:
 To cover this board:

With ten copies of this tile?

Number facts:

 How fast can you match each equation with the correct answer? Try to beat your time.

Learning at home: Notes for whānau

When your child finishes each activity, ask them to add a mouth to the face to show how they felt about that activity.

Problem 1:

$1,000 \div 60=16.66$, so 1,000 minutes $=16.66$ hours
16 hours $=960$ minutes, so 1000 minutes is 16 hours and 40 minutes.

Problem 2:

Your child should first try experimenting with ways to approach this problem. They could draw some 3×3 arrays and try different ways to draw lines to touch all the dots.

When they have tried for a while, encourage them to think about ways they can be 'clever' about the problem.

The most obvious one is to look at the corners other than A and B. The string has to go past them both, and the only way it can do so is as shown in this diagram:

Next, think about where the string can go from A to join onto one of the corners. There are only two possibilities:
A

A

B

For each of those there is only one way the string can get to the other two pegs to make a single line from A to B without touching any pegs more than once. The answers are:
A

B
and

Problem 3:

The answer is that yes you can. One way to do so is shown below.

Number line challenge:

The first thing to do in creating this number line is to work out what numbers should go closest to each end. Here are the numbers to place on the line in order from smallest to largest.

$$
0, \frac{20}{2}, 5,20,30.5,15 \frac{1}{2}
$$

The smallest number is 0 , and the largest number is 30.5 , so put those in first.

Then work out about where each other number belongs. 15) is about halfway between 0 and 30.5, so you could put that in next.

The numbers do not need to be placed exactly, but make sure they are in the right order and the spacing is reasonable. Here is a possible answer:

Perimeter challenge:

The perimeter of the shape can be found by adding up the lengths of its sides. There are two sides that are 6 cm long and two sides that are 2 cm long. $6 \mathrm{~cm}+6 \mathrm{~cm}+2 \mathrm{~cm}+2 \mathrm{~cm}=16 \mathrm{~cm}$.

The area can be found by multiplying the rectangle's height by its width. $6 \mathrm{~cm} \times 2 \mathrm{~cm}=12 \mathrm{~cm}^{2}$.

Shapes that are long and thin have a larger perimeter compared to their area, so to solve the other parts of the problem, make the shape thinner or squarer as required. Example answers are:
a. A $3 \mathrm{~cm} \times 4 \mathrm{~cm}$ rectangle (perimeter of 14 cm and area of $12 \mathrm{~cm}^{2}$.)
b. A $12 \mathrm{~cm} \times 1 \mathrm{~cm}$ rectangle (perimeter of 26 cm and area of $12 \mathrm{~cm}^{2}$.)
c. A $7 \mathrm{~cm} \times 1 \mathrm{~cm}$ rectangle (perimeter of 16 cm and area of $7 \mathrm{~cm}^{2}$.)
d. $A 4 \mathrm{~cm} \times 4 \mathrm{~cm}$ square (perimeter of 16 cm and area of $16 \mathrm{~cm}^{2}$.)

Quick questions:

1. 60
2. 4
3. 20
4. 2
5. $\frac{1}{2}$
6. $\frac{5}{6}$
7. 101
8. $\$ 2.20$
9. 4
10. 41

2×2	4	2×3	6
2×4	8	2×5	10
2×6	12	2×7	14
2×8	16	2×9	18
2×10	20	5×3	15
5×4	20	5×5	25
5×6	30	5×7	35
5×8	40	5×9	45
5×10	50	10×3	30
10×4	40	10×6	60
10×7	70	10×8	80
10×9	90	10×10	100

