Squaring Off

You need: multilink cubes or square grid paper, a classmate

Rose and Kate are exploring areas of successive rectangles made with multilink cubes. They start with a 6 by 6 square:

ACTIVITY

- a. What is happening to the shape and the area of each successive rectangle? 1.
 - **b.** The girls discover an interesting pattern in the differences between the areas of each successive rectangle. They show this in a table:

Size	Area	Difference from previous area
6 x 6	36	_
5 x 7	35	1
4 x 8		

- i. Copy and complete the table up to a 1 by 11 rectangle.
- **ii.** What is the pattern?
- c. Investigate to see if there is a pattern when you start with other squares. For example, if you start with an 8 by 8 rectangle, your next rectangles will be 7 by 9, 6 by 10, and so on.
- 2. Rose and Kate know that 100 x 100 = 10 000.

They use a pattern like the one above to work out these multiplication expressions:

- **i.** 98 x 102 **ii.** 94 x 106 iii. 88 x 112
- **a.** Draw up a table that shows the pattern.

Size	Area	Difference from previous area
100 x 100	10 000	-

What products did Rose and Kate get for the three expressions above? b.

Rose and Kate suddenly realise that the areas in their 6 by 6 pattern are reducing 3. a. from the original area by square numbers. For example:

Size	Area	Difference from previous area	Difference in area from the original
6 x 6	36	_	_
5 x 7	35	1	1
4 x 8	32	3	4
3 x 9	27	5	9
2 x 10	20	7	16

Does this work with the other squares you started with in question 1c?

Find another way to record this pattern. Write a general formula if possible. b.

2² _

 $1^2 = 2 + 1$

leaves

and

4. Rose and Kate find another pattern using squares:

 $2^2 - 1^2 = 2 + 1$ $3^2 - 2^2 = 3 + 2$ $4^2 - 3^2 = 4 + 3$ $5^2 - 4^2 = 5 + 4$

- $6^2 5^2 = 6 + 5$
- a. Investigate this pattern. Then show the pattern using multilink cubes or square grid paper. $3^2 - 1^2 = 2 \times 3 + 2 \times 1$
- **b.** What would the tenth equation in the pattern be?
- **c.** Use the pattern to answer these:

i. $87^2 - 86^2 =$ ii. $104^2 - 103^2 =$ iii. $562^2 - 561^2 =$ iv. $2\ 088^2 - 2\ 087^2 =$

- d. Discuss with a classmate why the pattern always works.
- **a.** Kate wonders if she will find a pattern if there is a gap of two 5. in the squares.

Investigate this pattern and explain it using diagrams, sentences, or formulae.

b. What will $10^2 - 8^2$ equal? Try to use the pattern you thought of in question a.

