## Shaping Up

You need: pattern blocks, a photocopy of the dodecagon copymaster, a classmate

Here are 3 ways to make a regular hexagon with pattern blocks:


1. What other ways can you find?
2. From this hexagon, you could write the equation: $\frac{1}{3}+\frac{1}{3}+\frac{1}{6}+\frac{1}{6}=1$
Write the other possible fraction equations for hexagons made with pattern blocks.

3. Here are 4 ways to make a regular dodecagon (a 12 -sided polygon) with pattern blocks. Find at least 8 more ways. Draw them as you find them.路


4. a. Write the area of the first dodecagon in question 1 as the sum of 3 different kinds of shape.
b. Find a way of showing that the area of 1 square pattern block is the same as the area of two 30/150 rhombuses. Explain your method to a classmate.
c. Rewrite the area of the dodecagon as a sum of squares and triangles only.
d. Rewrite the area of the dodecagon as a sum of squares and hexagons only.
e. Show that the area of each dodecagon pictured is the same.
f. Show that the area of each of your first 4 dodecagons is the same.
5. Increase the size of your dodecagon by adding a single ring of squares and trapeziums around the outside.
a. How has this changed the shape of the dodecagon?
b. What is its area now, written as a sum of squares and hexagons?
6. a. Is it possible to make a square out of pattern blocks without using the square pattern blocks? Explain your answer.
b. Can you make a regular octagon or decagon using pattern blocks?
7. Find a way of showing which has the greater area, 6 square pattern blocks or 2 hexagonal pattern blocks. See if you can convince your classmate that you are correct.
