Number Bk 3 Levels 3-4

Number Patterns

You need 🚺 a classmate

Activity

Giulio and Aimee are investigating number patterns. They talk about the 11 times table.

- a. What do you think Giulio does to get his answers?
- **b.** Aimee made a table up to 31 like the one below. Complete the table.
- c. What do you think Aimee does to get her answers after 9 x 11?

I know an easy way to get ones like 20×11 and 30×11 .

Number to multiply by 11	Product
10	110
11	121
:	:
30	330
31	341

8

Aimee is trying to work out 40×25 . She knows that double 25 is 50 and double 50 is 100, so there are four 25s in 100.

So if I work out how many 4s in 40, that'll give me the number of hundreds. $40 \div 4 = 10$, so $40 \times 25 = 10$ hundreds. That's 1 000. I'm really dividing by 4 and multiplying by 100.

Investigating strategies for multiplication

The 11 times table is so cool. I know mine up to 9, straight off. Then she tried 126×25 .

I'll work out how many 4s in 126 to give me the number of hundreds. $12 \div 4 = 3$, so $120 \div 4 = 30$, so $120 \times 25 = 30$ hundreds. There are six 25s left over; that's 1 more hundred and two 25s. So $126 \times 25 = 3\ 000 + 100 + 50$ $= 3\ 150$.

Aimee's method: 126 ÷ 4 = 31 and 2 remainder So 126 × 25 = 31 hundreds and two 25s = 3 100 + 50 = 3 150

Use Aimee's method (four 25s = 100) to complete these equations:

a.	60 x 25 =	b
d.	176 x 25 =	e
g.	36 x 250 =	h
j.	$20 \times 0.25 =$	

b. $800 \times 25 =$ c. $84 \times 25 =$ c. $365 \times 25 =$ f. $647 \times 25 =$ d. $12 \times 2500 =$ i. $48 \times 2.5 =$

That's great. I wonder if there's a way to do the 125 times table?

Giulio doubles 125 until he comes to 1 000. He finds there are 8 lots of 125 in 1 000.

So $16 \times 125 = 2000$ because $16 \div 8$ is 2 and that gives the number of thousands.

Giulio's method: 42 × 125 would be (42 ÷ 8) thousands. (42 ÷ 8) = 5 plus 2 remainder, so 42 × 125 = 5 000 + (2 × 125) = 5 000 + 250 = 5 250

Use Giulio's method to complete these equations:

- a. $24 \times 125 =$ b. $80 \times 125 =$ c. $44 \times 125 =$ d. $97 \times 125 =$
- e. $168 \times 125 = f$. $346 \times 125 =$

q

What about the 20 times table? I bet there's an easy way for that. And for the 200 times table?

¥4.

Work out an easy way to do the 20 and 200 times tables and use it to complete these equations: a. $23 \times 20 =$ b. $432 \times 20 =$

u.	$23 \times 20 =$	ы.	$152 \times 20 =$
c.	51 × 200 =	d.	36 × 200 =
e.	253 × 20 =	f.	319 × 200 =

That would make the 50 and 500 times tables a breeze too! But you could also use halving.

5.<u>*</u> ;

₹6.

a. Discuss with a classmate what Giulio means and work out an easy strategy for doing the 50 and 500 times tables. (Using a table might help you to see the pattern.)

b. Use your 50 and 500 times strategy to complete these equations:

i.	26 x 50 =	ii.	64 × 50 =
iii.	48 × 500 =	iv.	120 × 500 =
v.	16 x 49 =	vi.	24 x 496 =

Use your different strategies to complete these equations:

a.	27 × 11 =	b.	124 x 25 =
c.	18 × 125 =	d.	342 × 20 =
e.	816 x 50 =	f.	136 x 25 =
g.	83 x 125 =	h.	432 × 500 =