Fenced In

Activity

Sam is helping his dad to make a fenced run for his puppy. They draw plans that use 16 metres of fencing wire as the perimeter of the run:

Dad's plan

Sam's plan

(1.) Sam thinks his puppy run is better than Dad's one. What makes Sam think this?
(2.) Dad challenges Sam to find the dimensions of a run that will give the puppy the most room possible, using only 16 metres of fencing wire.
a. Draw on square grid paper or use a geoboard and rubber bands to find the largest rectangle possible for Sam's puppy run.
b. What is special about the shape of the largest puppy run possible?
c. If Dad and Sam used just 12 metres of fencing wire, what rectangular shape would the largest run be?
(3.) Sam predicts that the largest area of a rectangular run made with 40 metres of fencing wire would be 100 square metres.
a. How might he have worked this out?
b. Is he right?

(4.) When Dad and Sam get to the shop, there is a " 2 for the price of 1 " deal, so they get 32 metres of fencing wire instead of 16. They decide to make each side of the 4×4 run twice as long to give the puppy even more space.
a. With a classmate, investigate what happens to the area of the puppy run when the lengths of the sides are doubled.

b. Does this always happen? Try doubling the sides
of some different-sized rectangles.
Organise your information into a table like the one below.

Original run				Bigger run		
Length (m)	Width (m)	Area $\left(\mathrm{m}^{2}\right)$	Length (m)	Width (m)	Area $\left(\mathrm{m}^{2}\right)$	
4	4	16	8	8		
3	5		6	10		

c. Explain why this happens. (You might like to use a diagram.)
(5.)
a. What would you expect to happen to the area of a rectangle if you halved the length of each side?
b. Investigate this on square grid paper and record your results in another table.

Investigation

What happens to the area of a rectangle if you:
a. triple the length of each side?
b. divide each side by 3?

