

fencing wire as the perimeter of the run:

Dad's plan

Sam's plan

Sam thinks his puppy run is better than Dad's one. What makes Sam think this?

Dad challenges Sam to find the dimensions of a run that will give the puppy the most room possible, using only 16 metres of fencing wire.

- Draw on square grid paper or use a geoboard and rubber bands to find the largest a. rectangle possible for Sam's puppy run.
- b. What is special about the shape of the largest puppy run possible?
- If Dad and Sam used just 12 metres of fencing wire, what rectangular shape c. would the largest run be?
- Sam predicts that the largest area of a rectangular run made with 40 metres of fencing wire would be 100 square metres.
 - How might he have worked this out? a.
 - Is he right? b.

When Dad and Sam get to the shop, there is a "2 for the price of 1" deal, so they get 32 metres of fencing wire instead of 16. They decide to make each side of the 4 x 4 run twice as long to give the puppy even more space.

a. With a classmate, investigate what happens to the area of the puppy run when the lengths of the sides are doubled.

b. Does this always happen? Try doubling the sides of some different-sized rectangles.Organise your information into a table like the one below.

Original run			Bigger run			And
Length (m)	Width (m)	Area (m ²)	Length (m)	Width (m)	Area (m ²)	
4	4	16	8	8	l l	men int
3	5		6	10		
						e fait 5 -

- c. Explain why this happens. (You might like to use a diagram.)
- a. What would you expect to happen to the area of a rectangle if you halved the length of each side?
- b. Investigate this on square grid paper and record your results in another table.

Investigation

What happens to the area of a rectangle if you:

- a. triple the length of each side?
- **b**. divide each side by 3?