

1. Choose any two digits, for example, 4 and 7.

- Make all the two-digit numbers you can (47 and 74).
- Add these numbers $(47+74=121)$.
- Divide the result by the sum of the two digits $(7+4=11 \rightarrow 121 \div 11=$ \square).

2. Try this for some other sets of two digits. Explain why there is a pattern to your results.
3. Choose any three digits, for example, 3,6 , and 8 .

- Make all the different three-digit numbers that can be made with them. (With 3,6 , and 8 , these are: $368,386,638,683,836$, and 863.)
- Add these numbers together $(368+386+638+683+836+863=3774)$.
- Divide the result by the sum of the three digits $(3+6+8=17 \rightarrow 3774 \div 17=\square)$.

2. Try this with several other sets of three digits. What do you notice?

24 is a visible factor number because it can be divided evenly by each of its digits with no remainder.

1. a. Find the visible factor odd numbers that are greater than 20 and less than 100 .
b. What do these numbers have in common?
c. What ways did you use to make your search easier?
2. What are the visible factor even numbers between 20 and 50 ?
