

Activity

(1.) a. Look at the toothed cogs shown below. Each pair of cogs is joined by a chain. As the chain-ring cog in each pair turns one rotation, how many times does the free-wheel cog turn?

b. Discuss with a classmate how you can work out the number of turns by using the number of sprockets on each cog.
2. Look at the gears on a 10-speed or mountain bike.
a. How many different chain-ring cogs are connected to the crank?
b. How many different free-wheel cogs are on the free-wheel cluster (at the rear hub)?
3. If you have a 10 -speed or mountain bike you are allowed to ride, try changing gears on it.
a. What happens as you change gears?
b. How many different gears does the bicycle have?
4. In question 1 , you found the ratio of each gear. The ratio of this gear is $30: 20$ or $1.5: 1$. This is the number of turns the free-wheel cog (and therefore the back wheel) makes as the chain-ring cog turns once (and, therefore, so do the pedals).

a. Count the number of sprockets on each chain-ring and free-wheel cog of your bike. Use this information to work out the gear ratios.
b. Which gear ratios are best for climbing hills? Why?
c. Which gear ratios are best for cycling fast? Why?
free-wheel cog chain-ring cog \square

