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The nzmaths website has as one of its basic philosophies that maths can be 
better understood when approached through a bit of problem solving.  Indeed, 
Derek Holton once said, “Problem solving encapsulates what mathematics is all 
about.”  Perhaps our own preoccupations with mathematics centre round 
problem solving at school level but I’m sure it doesn’t come as a surprise to hear 
that problem solving is what research mathematicians do.  Indeed, with the 
recent successes of films like A Beautiful Mind and Good Will Hunting and books 
like Simon Singh’s Fermat’s Last Theorem, mathematical research and by 
implication problem-solving, is becoming quite the glamour event.  This, of 
course, can only be good for mathematics. 
 
Mathematicians are happy to solve problems for the glory of it alone but there 
have been over the years some financial rewards available for solutions to 
certain ‘sticky’ problems. 
Prizes, of course, are routinely awarded in magazines for solutions to ‘this 
month’s problem’, even this newsletter is not exempt.  The Hungarian 
mathematician Paul Erdös set hundreds of problems in his published papers and 
via letters to colleagues with prizes starting at 25 cents, totalling around $25,000.  
Some of mathematician’s more complicated problems that have stood the test of 
time carry huge rewards.  Martin Dunwoody is hoping to collect a million dollars 
for his proposed solution to a centuries-old problem set by Poincaré and there is 
a million dollars offered for each of the solutions to a number of others including 
the Reimann hypothesis and the Hodge conjecture.  
 
Not all of the problems are ‘oldies’.  Research mathematicians Alex Selby and 
Oliver Riordan shared a million dollars in October 2000 for solving the Eternity 
Puzzle, a 209-piece ‘jigsaw from hell’. 
 
Where does that leave us?  Well, I guess you can have a go at this month’s 
problem in our newsletter.  I’m not sure Derek will offer a million dollars for the 
solution but you might pick up fifty. 
 

 
 In Mathematics the art of posing problems is easier than that of 
 solving them. 

          Georg Cantor 



 
If you’d like to know more about the million dollar problems – what they are and 
how to go about collecting the prize money for their solution, you might like to 
look at  
www.claymath.org  
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WHAT’S NEW ON THE NZMATHS SITE THIS MONTH? 
Another ten websites links have been added to the links component of the site 
but apart from them nothing new has been added this month. 
 
Minus times minus equals plus 
 
It just came up in conversation the other day, as it often does. There are these 
mantras in maths that we all parrot off, and use if we have to, but we don’t really 
know why they are true. Come on now. If one of your students asked you to say 
why it’s true what would you say? Why does ‘minus times minus equal plus’ 
work?  
 
So what did we decide? Well, we came up with two arguments. One was more a 
demonstration than anything else: what else could it be? The other was a tight, in 
fact watertight, argument based on sound algebraic principles. The former was 
something that you could explain to anyone. The latter, well … So here’s a 
distillation of the arguments. See what you think. Are you convinced? 
 
Try 1: OK so let’s look at (-3) x (-4). What could this possibly be? Let’s sneak up 
on that. First we all know that 3 x 4 = 12. What about (-3) x 4? Surely this is 4 lots 
of (-3)? And that has to be (-3) + (-3) + (-3) + (-3) = (-12) = -12. (We’re just using 
the brackets here so that you’re not tempted to do any operating with them.)  
 
You can probably do the calculation many other ways. Think about (-3) as being 
your overdraft in millions of dollars. Right? Then (-3) x 4 is essentially 4 lots of 
such redness. That has to be an overdraft of 12 million dollars. So (-3) x 4 = -12. 
 
That brings us to the more important question of the value of (-3) x (-4). It’s hard 
to think up a ‘real’ situation for that so we have to get there through the backdoor. 
Step 1 says well there’s a 3 there and a 4 so there ought to be a 12 in the 
answer. Step 2 says that, because of the minus signs, the answer will surely be 
+12 or -12. But (-3) x 4 = -12, so most likely (-3) x (-4) = 12.  
 



We can tighten this up a bit if we look at [(-3) x 4] + [(-3) x (-4)]. What is this? 
Now  
[(-3) x 4] + [(-3) x (-4)] = (-3)[4 + (-4)] = (-3) [4 – 4] = (-3) x 0 = 0. Whatever (-3) x 
(-4) is then, when you add it to (-3) x 4 you get zero. But (-3) x 4 = -12. What do 
you have to add to -12 to get zero? Surely that’s +12. So (-3) x (-4) has to be 
+12!! 
 
Now what you can do for (-3) x (-4) you can do for any two negative numbers. So 
that has to mean that (-a) x (-b) = +ab. Minus times minus does equal plus!! 
 
Try 2: We have to say at the start that this is not for the faint hearted. We also 
have to say that all we are about to do is to use the method of Try 1 but use 
algebra and so gie a justification for all a and b not just 3 and 4.. So what is (-a) x 
(-b)? 
 
First we need to convince you of something you were probably happy about 
anyway but convince you we will. (-a) x b = -ab. How do we do this? Consider (-
a) x b + a x b. So 
 
(-a) x b + a x b = [(-a) + a] x b = [-a + a] x b = 0 x b = 0. 
 
If (-a) x b + a x b = 0, then [(-a) x b] = -[a x b] = -ab. And that’s just what we were 
trying to show: (-a) x b = -ab. In pretty well exactly the same way we can show 
that a x (-b) also equals –ab. 
 
But what about (-a) x (-b)? First notice that [(-a) x b] + [(-a) x (-b)] = (-a)[b + (-b)] 
= 0. So [(-a) x b] = which gives -[(-a) x (-b)] = -ab, so [(-a) x (-b)] = ab. And minus 
times minus does equal plus!! 
 
If that doesn’t make any sense to you then email Derek at derek@nzmaths.co.nz 
. He’s got nothing much else to do and he’d be glad to explain to you the bits that 
you didn’t understand. (But first try the above argument with a few specific values 
of a and b.) 
 
More on the problem solutions for June and July 
 
We’ve had a few more thoughts on the solutions for June and July. So we’ve put 
them below. We also realize that the August newsletter was emailed to 
subscribers but it did not reach the web site until very late in the month. So we 
are extending the August problems for one more month. Sorry about those of you 
who have emailed in your answers already.  
 
1. June Solutions 
 
Recall that we had three discs (below) with numbers on both sides. We tossed 
the discs in the air, noted the numbers that were face up, and added the three 



numbers together. Then we saw that the totals were always consecutive 
numbers. So what numbers were on the other side? 
 
 
 
 
 
 
 
 
 
 
One way to tackle this problem is to throw one disc away. Try to see what 
happens in an easier case and build up to the harder one. In fact it would be 
even easier if we just had discs with 0 and 0 on the top. With 0 and 0 we’d have 
to make totals of 0, 1, 2 and 3; -1, 0, 1 and 2; -2, -1, 0 and 1; and -3, -2, -1 and 0.  
 
So what numbers would we have to use on the other side of the zeros to get 
these consecutive totals? 1 and 2 would get the first string; -1 and 2 the second; -
2 and 1 the third and -2 and -1 the fourth. So now add 5 and 8 to the 0 sides and 
add/subtract the 1s, and 2s to 5 and 8 and put them on the other side of the disc. 
But watch out. 5 + 1 and 8 + 2 as well as 5 + 2 and 8 + 1 both give consecutive 
totals of 13, 14, 15, 16. So it looks as if here there are eight ways to get the four 
consecutive totals. 
 
Now for those of you who have not forgotten all of the algebra that you were 
taught, here is a start to an algebraic approach to the discs problem. Suppose 
that the number a is on the back of the disc with 5 showing and the number b is 
on the back of the 8. One way to get consecutive numbers is for 5 + 8 = 13; a + 8 
= 14; 5 + b = 15 and a + b = 16. If you solve that you get a = 6 and b = 10. (Now 
all you have to do is to write out the other possible equations!) 
 
But have you ever come across the following problem. We think that we saw it 
somewhere in the Figure It Out series. On his old fashioned pan scales, a 
butcher can weigh out each of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, and 15 
kg exactly. How can he do this with only three weights? 
 
We suppose that we had better get back to the three discs. Now the same thing 
happens with three discs as it did with two. But this time we have not just to add 
or subtract 1 and 2 but add or subtract 1, 2 and 4. Discs that have 0 with 1, 0 with 
2, 0 with 4 on them, give all totals from 0 to 7. Adding these together with 5, 8 
and 11 give 6 possibilities. But if we think about ±1, ±2 and ±4 we get a whole lot 
more. There are 8 ways to assign the plus or minus to three numbers. So 
altogether we get 48 possible ways to add numbers to the discs. 
 

5 8 11 



The best crop of answers was from Cathy Walker. She produced 20. Here they 
are: 1,6,12; 1,7,9; 1,10,10; 3,7,7; 3,4,10; 3,9,7; 4,6,7; 4,4,9; 4,10,7; 6,6,7; 6,4,9; 
6,10,7; 6,12,9; 7,7,7; 7,4,10; 7,9,7; 9,7,9; 9,6,10; 9,9,9; and 9,10,10. So she gets 
the book voucher for the answer to the June problem. But we have to give a 
special mention to the spreadsheet submission that tried to systematically 
produce all of the answers. WE couldn’t get it to work but it is a way to go. It will 
certainly go through all possible numbers for you, picking up all the correct 
answers on the way  
 
2. July Solutions 
 
And talking of spreadsheets, one way to get your hands on the farmers and their 
sons is to use one of those new fangled inventions. 
 
In column A put the numbers 1 up to n (where n was the number of calves, and 
hence the price per calf, that a son could have bought); make column B, column 
A squared (the amount the son paid); make column C, column B + 63 (the 
amount the son's father paid); and make column D the square root of column C 
(the number of calves, and price, the father bought). 
 
No matter how far you extend the spreadsheet there are only three values of n 
which produce a whole number for (n^2+63)^0.5, so these must be the father/son 
pairs. These numbers are 1, 9 and 31. Given that Alan buys 23 calves more than 
Ernie and Craig buys 11 more than Dan the only possible combinations are: 
 
Alan's son is Fred, Craig's son is Ernie, and Bob's son is Dan. 
 
The only correct solution came from Evan Jones from Napier. 
 
This Month’s problem 
 
Imagine a square of paper.  Can you cut it up into smaller squares?  It certainly 
doesn’t sound difficult.  For example, 
 
A square can be cut into ….            four squares, or .....              six squares. 

 
Nobody mentioned that the squares had to be the same size! 
 



The question is, can we cut our square into any and every number of squares?  
That means, of course, with no paper left over. 
 
Each month we give a petrol voucher to one of the correct entries.  Please send 
your solutions to derek@nzmaths.co.nz and remember to include a postal 
address so we can send the voucher if you are the winner. 
 

Mathematics is not a spectator sport.  If you want to be good at it 
you have to practise, practise, practise. 
 

         Dennis McCaughan 


