Prime Sites

INVESTIGATION ON

NVESTIGATION TWO

prime numbers (in red)									
1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
31	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

5 and 7 are prime numbers. 6 is the first multiple of 6.

11 and 13 are prime numbers.12 is the second multiple of 6.

12 **13**

Are the numbers on either side of a multiple of 6 always prime? Explain your answer.

Chebyshev, a Russian mathematician, wrote: Between every whole number and its double, there is always at least one prime number.

Kaylene and Ranea are discussing Chebyshev's statement. They start by looking at the numbers 1 to 20.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

It works for 2. Double 2 is 4. Between 2 and 4 is 3. That's primel

> It doesn't work for 1. Double 1 is 2. Between 1 and 2 there are no prime numbers.

Investigating patterns with prime numbers

Investigate Chebyshev's theorem with at least 10 numbers.